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Abstract
The concept of waste to valuable products is a hot topic with exploring ongoing worldwide to
minimize food-based feedstocks. This work utilized a citric acid solution and an ultrasound-
assisted to extract pectin from orange waste, a critical agroindustry byproduct. Artificial neural
network and central composite design were utilized to assess the extraction of pectin using
different levels of the extraction parameters and in turn to optimize the extraction process. The
extraction of pectin from orange waste is found to be highly affected by pH solution and
ultrasound power. The result of an artificial neural network was found to be better in terms of
prediction capability and performance indexes. Fourier transform infrared spectrometry analysis
confirmed the existence of functional groups in the fingerprint region of orange waste pectin. Ash
and crude protein content of orange wastes are found to be low; meaning low ash and protein
content contributes to better gelling ability of the pectin. The extracted pectin has a higher degree
of esterification. The result of the current work highlighted that orange wastes are a good source of
pectin. In addition, the extracted pectin from orange wastes can be used as a food additive as it
fulfills all the standard requirements pectin for application.
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Introduction

Polybrominated diphenyl ethers (PBDEs)
consists of 209 possible substances, Pectin
is a complex polysaccharide substance in cell
walls of the plant, including a backbone of α-
1,4-galacturonic acids that are partly esterified
at the carboxylic acid groups [1]. It comprises
25% of the molecular part in the plants
admitting their growth and cell propagation
[2]. Depending on the esterified carboxylic
acid groups, pectin is classified into two
classes with different utilizations: high
methoxyl pectin (HMP, esterification degree
above 50%) and low methoxyl pectin (LMP,
esterification degree below 50%) [3]. The
existence of the esterified groups and as well
as neutral sugars, as the side chains, contribute

to developing various contributions covalently
connected, that homogalacturonan and
xylogalacturonan are the most significant of
them [4]. These complex polysaccharides,
widely distributed in the cell wall of the plant
tissues, have several utilizations in the nutrient
industry and pharmaceutical industry (as an
antioxidant, anti-diabetic and anti-cancer) [3].

Traditionally, pectin is extracted from

citrus waste utilizing hot acidified water
that brings destroying and change of its
structure which leads to change its natural
characteristics [5]. Non-conventional
extraction technologies were formulated [6].
Amidst these techniques, ultrasound-assisted

extraction is considered as an effective and
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efficient technique, since the influence of
ultrasound waves used to ameliorate the
destruction of cell wall of the plant and
increase the rate of mass transporting for
better performance and quality of the
product with the short time of extraction
[7].

Since it is inexhaustible in pectin, the
waste of orange is considered as the essential
crude material that plays a critical role in the
manufacturing of pectin. Orange natural
products areee most utilized by juice
preparing businesses, left as squanders each
day [1]. Instead of disposing of that material as
squanders, it is important to convert it into
valuable products, a massive amount of
orange wastes are produced every year [8].
Considering the expansive amount of
pectins by the orange handler, it would be
incredibly useful to utilize this source for
manufacturing value-added items. Artificial
neural network (ANN) and Central composite
design (CCD) models have been highly
applied in optimizing various process
parameters. However, CCD model is only for
a restricted range of input process variables
and artificial neural network (ANN) is an
excellent tool over CCD for non-linear
multivariate [9], a technology that includes
several numbers of layers [10].

ANNs are powerful computational and
flexible intelligence systems standing for
nonlinear regression technique with a good
level of robustness to map the nonlinear
structures of any problems. As a result, ANNs
have found out several applications in
detecting nonlinear functional relationships
between variables with non-integrated,
multidimensional, and nonlinear data sources
owing to their the maximum learning ability
[11].

An ANN is made from hundreds of
single units, artificial neurons or processing

elements linked with coefficients (weights),
that constitute the neural construction and are
formed in the hidden layers [12].

To develop feed forward multilayer
back propagation, ANN tool was carried out
using MATLAB® 2016a. Therefore, the
objective of this study was an optimization of
ultrasound-assisted pectin extracted from
orange wastes and its characterization using
CCD and ANN model. Besides, to study the
consequence of process parameters on the
result and compare the central composite
design and artificial neural network
prediction capability and their performance
indexes.

Materials and Methods

The orange wastes were collected from
a juice processer in Jimma city, Ethiopia. It
was manually cleaned and dried for 36 hrs
followed by an electric oven dry at 55 oC and
pretreated [13].

Analytical grade chemicals [Citric
acid, HCl, H2SO4, NaOH, ethanol, 2,2-
Diphenyl-1-Picrylhydrazyl] were purchased
from chemical purchasers.

Proximate analysis

For orange waste characterization, it
was determined the moisture contents (MC),
ashes contents (AC) and crude protein
contents (PC) followed by analytical standards
of ASTM method adopted by [14], with
modification. The moisture was found out
depending on the sample weight loss
subjected to heating at 103 °C until a constant
weight was recorded. The ash content
corresponds to the residual obtained by
burning at temperatures of 550 °C to get clear
light ash. Crude protein was determined by
Florencia, et al. [15], method and 6.25 as
factor for the protein nitrogen contents.



Pak. J. Anal. Environ. Chem. Vol. 22, No. 2 (2021)346

Central composite experimental design

Extraction parameters are selected as
shown in Table 1 with coded and actual levels
according to pre-study.

Table 1. Central composite design parameters level for pectin
extraction.

Parameters Unit Minimum Maximum Levels

A: Irradiation
time

Min 15 30 10
(-1)

25(0) 40
(+1)

B: pH solution - 2 3 2
(-1)

2.5(0) 3
(+1)

C: Ultrasound
power

W 50 120 50
(-1)

85(0) 120
(+1)

D: Liquid-solid
ratio

mL/g 15:1 25:1 15:1
(-1)

20:1(0) 25:1
(+1)

The second-order models generated by
central composite design are shown by
Eq. (1).

(1)

Where, Y, xi and xj, , βi, βi, βii, k,

and are anticipated response, input factors,
constant term, linear coefficient, quadratic
coefficient, interaction term, number of
factors, and random error, respectively.

Artificial neural network

An artificial neural network is an
information-processing framework that has
certain execution characteristics in mutual
with neural network systems. Among different
neural network models, the feed-forward
neural depend on back-propagation is the most
beneficial tool. This network tool has four
inputs (irradiation time, ultrasound power, pH,
and liquid-solid ratio) and one output (yield of
pectin). To prepare the training, input-output
data detected from the actual value are divided
into 70% for training, 15% for test and 15%
for validation [10]. To find out the best
training efficiency, input-output was
normalized to [-1,1], [16]. The normalized
data were forwarded to the artificial neural

network in feed-forward multilayer
backpropagation. After the ANN tool
memorizes the data from the training, cross-
validation was applied to prevent an overfit of
the training. The best neurons in the hidden
layer was decided when the small number of
performance indexes have reached. CCD and
ANN model performance index evaluation.

The ANN model was tested with 30
data sets of CCD experiments. For each input
combination, the anticipated values of pectin
yield were compared with the respective test
values of the performance indexes such as
coefficient of determination value (R2),
average squared error; MSE, average mean
error; AME, prediction of standard error; PSE,
and mean absolute difference; MAD as shown
in Eqs. (2-6).

(2)

(3)

(4)

(5)

(6)

Where; x = number of run, pr = predicted
value, ex = experimental value and m =
mean experimental value

Pectin extraction process

The extraction was carried out utilizing
Chua [17], with modification in all runs, and
40 gm of the powdered sample was blended
with pH of (2 3) citric acid solution in a 400
mL flask. It was then sonicated for
(15 30min), in the range of 60 140W,
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ultrasound power, thereafter the mixture was

maintained at a temperature of 25C and
percolated. The percolate carrying pectin was
chilled down, for 20 min and centrifuged at
7500 rpm. Ethanol of 95% was utilized, to
precipitate the supernatant and allowed for 60
min, for flotation of the pectin. The resulting
dried pectin was ground too finely pectin and
stored for subsequent analysis.

The extracted orange peel pectin yield
was calculated on dry basis as follows.

(7)

Table 2. Independent parameters, experimental value and yield
using RSM and ANN prediction.

Factors EXP CCD

Run
Order

Irrad-
iation
time
(min)

pH
solution

Ultrasound
power (W)

L-S-R
(mL/g)

%
Predicted

%

1 30 2 120 30 20.01 20.11
2 15 3 120 15 9.90 10.81
3 22.5 2.5 85 22.5 23.23 24.16

4 15 3 50 30 11.30 12.34

5 30 3 120 30 10.30 11.31

6 30 2 50 15 16.30 17.55

7 22.5 2.5 85 7.5 16.70 17.45

8 37.5 2.5 85 22.5 7.30 8.15

9 30 2 120 15 22.57 23.51

10 7.5 2.5 85 22.5 8.50 9.27

11 22.5 3.5 85 22.5 5.75 6.46

12 22.5 2.5 85 37.5 16.70 17.55

13 22.5 2.5 85 22.5 23.40 24.19

14 30 2 50 30 15.01 15.95

15 22.5 2.5 50 22.5 15.80 15.55

16 22.53 1.52 155.6 22.51 26.5 27.13

17 15 2 50 30 15.00 14.20

18 30 3 50 30 10.00 11.30

19 15 3 50 15 8.31 9.72

20 30 3 50 15 8.10 8.10
21 22.5 2.5 85 22.5 23.10 24.19

22 15 2 120 30 20.54 21.65

23 15 2 120 15 22.50 23.71

24 22.5 2.5 85 22.5 23.00 24.16

25 15 2 50 15 16.40 16.2

26 30 3 120 15 8.88 10.06

27 22.5 2.5 85 22.5 22.99 24.17

28 22.5 2.5 85 22.5 23.40 24.19
29 22.5 2.5 85 22.5 23.23 24.15

30 15 3 120 30 11.50 13.71

EXP. = Experimental, CCD=Central composite design

Product Characterization
FT-IR Spectroscopy Detection

The pectin contents were detected
utilizing the prink Elmer spectrum 70 FT-IR
technique with the help of IR correlation. The
wavenumber region for the analysis was 4000-
400 cm-1 and the IR spectrum was reported
using percent of transmittance.

Esterification Degree (ED)

The esterification degree was decided
based on the procedure adopted by Chua [17],
with modification by utilizing Eq. (8).

(8)

Where, M1 = initial titer volume (mL), and M2

= last titer volume (mL)

Equivalent Weight (EW)

The equivalent weight was calculated
utilizing method reported by Mohamed [18]
including modifications and the percent of the
equivalent weight was determined utizinig
Eq. (9).

(9)

Where, Ra = amount of NaOH (milliliter), and
Naen= concentration of NaOH.

Methoxyl determination

The amount of methoxyl content (MC)
was carried out utilizing Sundarraj et al., [19]
procedure and its percentage was determined
according to Eq. (10).

(10)
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Total an-hydrouronic acid (TAA)

It was carried out utilizing the
procedure adopted by Mohamed [18] and its
percentage was determined using Eq. (11).

(11)

Where, a = amount of NaOH (mL)
from Eq. (9) and b = amount of NaOH (mL)
from Eq. (10).

Acetyl value

The Acetyl value of dry pectin was
determined using procedure reported from
Kliemann [20] and percentage of acetyl was
determined by Eq. (12).

(12)

Results and Discussion
Proximate Analysis

The orange wastes were analyzed for

its proximate analysis using the standard
ASTM recommended method. The result of
the proximate analysis shows that the moisture

content of the orange waste was 10.2 % 0.01.

This result was expected because the sample
has been subjected to drying for 72 h to
minimize the moisture content of the sample.

Ash content and crude protein content

of orange wastes were 4.56%  0.02 and 1.72
%  0.4 respectively. According to Asgari
et al., [21], low ash and protein content leads

to better gelling properties of the pectin.
Similar protein content of commercial citrus
pectin of 1.76%  0.2 was observed [22]. The

crude protein content of pectin extracted by

microwave assisted extraction of 1.67-1.74%
was similar to that of the pectin extracted by
conventional extraction of 1.65%. The crude
protein content measured was due to the

dissolution of nitrogen from the powder of

orange waste in the solvent because of the

high temperature generated by both
ultrasound-assisted extraction and microwave
assisted extraction method [23].

Validation of central composite design model
optimization for experimental data analysis

A very good correspondence between
the observational and anticipated values for
pectin yield was obtained from the check bit
plot generated by CCD as shown in Fig. 1.
Besides, according to Table 2, the extracted
minimum and maximum pectin yields were
5.75 % and 26.5%, respectively. As well as at
optimal extraction, point; 22.51:1 mL/g) of
liquid-solid ratio, of 1.52 pH solution, 155.6
W of ultrasound power, and 22.53 min of
extraction time, 27.13% pectin yield was
attained using response surface methodology
prediction. By triplicated tests on the stated
parameters, the achieved result checked that
the anticipated model for extraction process
was in high precision the extraction yield of
pectin under triplicated optimized point was
27.8 ± 02%.

This result was confirmed with 28.07 ±
0.67% of pectin extracted by ultrasound-
assisted from sour orange peel at optimal
extraction conditions [24]. The variation could
be due to; plant source and the extraction
technique taken for the separation process
[25]. Remarkably, the extraction yield of
pectin in this study was greater than the
described results for the extracted pectin from
apple pomace using microwave-assisted
extraction technique by Asgari et al., [21],
using a conventional technique (15.75%), by
Chen et al. [24], from dragon fruit peel using
microwave-assisted extraction technique
(7.50%) and by Methacanon [4] using by
conventional technique (8.80% ).
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Figure 1. Actual value via CCD prediction of the yield

The outcome of ANOVA for the
model is demonstrated in Table 3. It is shown
that the model is substantial with a 95% level
of confidence when the value of P for model is
below 0.05 [26]. As demonstrated, the value
of P was below 5% that shows the model was
strongly significant in (Table 3).

The suggested quadratic model
equation is based on the results of ANOVA as
indicated in Eqs. (13), in terms of code by
applying multiple regression analysis on the
experimental data for prediction of the
yield.

The quadratic models of regression
analysis suggested by the model were
expressed as follows in terms of coded
factors.

Pectin Yield (%) = + 24.18-029A – 4.37B +
1.59C+0.03D – 0.21AB – 0.07AC – 0.11AD –
1.29BBC + 0.96BD – 0.24CD – 3.88A2 –
2.26B2 – 1.12C2 – 1.68D2 (13)

Table 3. ANOVA analysis for the quadratic result.

Source SS DF MS F-Value P-Value

Model 1160.73 14 82.91 1305.30 0.0001***

A 1.86 1 1.86 29.27 0.0001***

B 362.96 1 362.96 5714.31 0.0001***

C 48.42 1 48.42 762.26 0.0001***

D 0.02 1 0.02 0.32 0.5791*

AB 0.63 1 0.63 9.95 0.0065**

AC 0.07 1 0.07 1.15 0.3010*

AD 0.19 1 0.19 3.05 0.1013*

BC 34.80 1 34.80 547.81 0.0001***

BD 14.29 1 14.29 224.95 0.0001***

CD 0.86 1 0.86 13.48 0.0023**

A² 414.24 1 414.24 6521.56 0.0001***

B² 91.14 1 91.14 1434.84 0.0001***

C² 22.57 1 22.57 355.40 0.0001***

D² 77.15 1 77.15 1214.57 0.0001***

Residual 0.95 15 0.06

Lack of Fit 0.78 9 0.09 2.95 0.1004*

Pure Error 0.18 6 0.03

Total 1161.68 29

R² 0.968

AdJ.R² 0.948

Pred. R² 0.958

Ade Pr. 26.361

Std. Dev. 1.160

Mean 15.810

C.V. % 7.330

Degree of freedom (DF), Sum of square (SS), Average square (AS)

Effect of Process Variables on the Yield of
Pectin

The result in Table 3 and Eq. (13)
separately showed that all variables were
widely effective in the extraction process,
except the liquid-solid ratio does not
significant. pH solution should be considered
more than the other factor since it was the
most significant indicator in the extraction
process (Table 3 and Eq. 13). Apart from the
liquid-solid ratio and pH, the combinations
versus ultrasound power and pH had a highly
influential on the yield. A 3D plots were
demonstrated below for more exploration in
the relationship between response and
parameters. At the least pH solution and
highest ultrasound power, the maximum
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extraction yield was attained. This means,
high acidic media brought the pectin leakage
from the plant substance and in consequence,
increased the extraction efficiency [13].

Figure 2. pH Vs Ultrasound (a) and pH Vs Liquid-solid ratio on
the yield(b)

Another efficient variable that had a
direct influence on the extraction was
ultrasound power. Fig. 3a reveals that
ultrasound power was better to yield when
enhancing the ultrasound power. This result
may be related to the cavitation consequences
of ultrasound waves and this cavitation bring
up the solvent insight into the intercellular
substance of the plant and thereby upgrades

the pectin escapees leads to an increase the
extraction efficiency [27] .

The irradiation time is another
important process parameter that affects the
yield of pectin significantly compared to the
liquid-solid ratio in this study. Due to the
creation of the cavitation bubble by ultrasound
waves supports the disruption of the cell wall
of the plant to increase the extraction
efficiency and produce swelling and hydrate
the plant material in the initial stage [5]. The
yield of pectin did not highly influence with
liquid-solid ratio; it was affirmed by the
outcomes of the ANOVA (P <5%) and Eq.
(13). It also seen that changing the ambit of
analyze greater than 22.51:1 mL/g of liquid-
solid ratio, might be contribute to an unlike
decision concerning the engagement of this
exploiting variables in the cavitation impact
happening in an extraction helped by
ultrasound wave [27]. In addition, for the
similar process parameters, similar optimum
conditions were investigated for pectin
extracted from orange peels using ultrasound
assisted technique. While the higher yield of
pectin (27.8 ± 02 %.) was investigated
experimentally from orange wastes using
ultrasound assisted method in the current
study, compared to pectin extracted from
orange peels (26.87%). This is due to the
orange wastes containing both bark (peels) of
the orange and inside parts of the orange left
after used [28].

Artificial neural network (ANN) based
modeling

The ANN anticipation was developed
applying the information obtained from CCD
(Table 1). The artificial neural network model
was done by the selection of the reserve
algorithm of training, determining the
optimum value of the neuron, and validation
of the model. Levenberg–Marquardt artificial
neural network corresponding tool and

b)

a)
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Transfer Function, TANSIG 4–8–1 (the input,
neurons in the hidden and output) layer model
was implemented. To examine the insertion of
the prediction from the created models; the
experimental values were compared with the
anticipated result of central composite design
and artificial neural network models. It is
shown that the anticipated yield by CCD and
ANN model has closely concurred with the
actual values (Table 4). However, the
prediction capability of ANN is greater than
the prediction of CCD.

Table 4. Result of CCD and ANN prediction on sugar yields.

Run
number

Experimental
value

CCD
Prediction

ANN
Prediction

1 20.01 20.11 20.30

2 9.9 9.81 9.93

3 23.23 23.16 23.17

4 11.3 11.34 11.91

5 10.3 10.31 10.41

6 16.3 16.55 16.80

7 16.7 16.45 16.65

8 7.3 7.15 7.38

9 22.57 22.51 22.53

10 8.5 8.27 8.62

11 5.75 5.46 5.77

12 16.7 17.55 17.60

13 23.4 23.19 23.20

14 15.01 15.95 14.96

15 15.8 15.55 15.98

16 26.5 27.13 28.33

17 15 14.2 15.06

18 10 10.3 10.45

19 8.31 8.72 8.97

20 8.1 8.1 7.58

21 23.1 23.19 23.17

22 20.54 20.65 20.75

23 22.5 22.71 22.85

24 23 23.16 23.16

25 16.4 16.2 14.36

26 8.88 8.06 9.12

27 22.99 23.17 23.18

28 23.4 23.19 23.21

29 23.23 23.15 23.16

30 11.5 11.71 11.91

The actual value and predicted value
of the ANN was also plotted in Fig 3. This
graph consists of the linear line shows, y = x,
meaning, the anticipated value of the pectin

yield is equivalent to the experimental value
with the highest level of correlations
coefficient compared to the prediction
achieved the utilizing CCD shown in Fig. 1.

Figure 3. Experimental value versus ANN prediction of pectin

yield

The relationship between the
parameters as specified by the coffient of
determination (R2), meaning a unit number of
the coefficient of correlation implies a perfect
relationship between variables while a zero (0)
number indicates the non-existence of a
linearity between the parameters [29].
Statistical performance indices were assumed
in finding the higher anticipation power of the
model and decided using Eqs. (2 6), to
compare the ANN and CCD prediction
efficiency as shown in Table 5. The best
solution was chosen based on the highest
coefficient of correlation and least MSE for
training, testing, and validation. Therefore,
after the larger number of training, 8 numbers
of neurons were selected depending on, the
best ANN performance indexes as indicated in
Fig. 3 and 4. Additionally, the selected values
of performance of training, testing, and
validation are indicated in supplementary
material Table 2. Fig. 4 shows the regression
plots of the training, validation, test, and all R-
value with the LM algorithm.



Pak. J. Anal. Environ. Chem. Vol. 22, No. 2 (2021)352

Training: R=0.99992 Validation: R=99738

O
u

tp
u

t-
=
1

*T
ar

g
e
t

+
0
.0

2
5

O
u

tp
u

t-
=

1
*T

a
rg

e
t
+

-1
.1

Target Target

O
u

tp
u

t-
=
1

*T
ar

g
e
t

+
-1

O
u

tp
u

t-
=

0
.9

8
*T

a
rg

e
t

+
0
.0

0
9
1

Test: R=0.98476 All: R=0.99333

Target Target

Figure 4. Correlation coefficients for mean pectin yield (ANN)

Evaluation of central composite design and
artificial neural network performance

To detect the best model that
accurately predicts the extracted yield of
pectin, the anticipation ability of the central
composite design and artificial neural network
models, the statistical performance indexes
were evaluated for both models (Table 5). The
R-result of CCD and ANN model are 0.967
and 0.994, respectively. Concurring to the
values of R, the prediction degree of the
artificial neural network model has a higher

prediction capacity compared to the CCD
model. Additionally, ANN indicates the lower
statistical performance indexes, as shown in
Table 5, compared to CCD. Depending up on
the predictive capacity, it is shown that the
ANN model can captivate the degree of
complexity that appears between the reception
and input process variables. In any case, to
depict the process, huge data are fundamental
for ANN preparing. There are numerous
components, such as the input-output,
neurons, also learning variables that impact
fruitful ANN preparing. These components

Training: R2=0.99992 Validation: R2=0.99992

Test: R2=0.0.9847 All: R2=0.99333
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are to be decided by a trial and error strategy
and repeated preparing the training
reenactment, and this is time expending. On
the other hand, the response surface
methodology model requires the least number
of tests to formulate the model.

Table 5. CCD and ANN models Statistical performance
indicators.

Variables CCD ANN
R 0.968 0.995
MSE 0.027 0.012
SEP 0.006 0.002
MAE 0.413 0.132
AAD 0.321 0.211

Product Characterization
FT-IR haracterization

The FTIR range of the extricated
pectin from orange waste is appeared in
Fig. 4. The broad extending, strong
assimilation region between 4000 and 500
cm−1 (e.g., 3434 cm−1) is typically hydroxyl
group (O-H) and is related to vibrational
fashions of intra and inter-molecular H2

attaches of the Galacturonic acid polymer in
terms of free hydroxyl bunches and attached
O-H groups of carboxylic acids [30]. The
absorption peak at 2937 cm−1 (3000–2800
cm−1) was designated to the C-H (CH, CH2,
and CH3) extending oscillations [31]. The
presence of intense peaks within the
assimilation zone between 950 and 1450 cm−1

can be due to the vibrations associated with
glycosidic bonds and pyranoid rings [32].
However, some studies pointed out that the
bonds show at approximately 800–1500 cm-1

assigned to a unique fingermark region with
particular functional bunches property of
polysaccharides [30].

Depending on the detected
information, the biopolymer pectin extricated
from orange wastes could be a
polysaccharide-rich linked with poly α-D-
galacturonic acid. The extracted pectin in
present experiment confirmed to absorption

peaks with the pectin extracted from apple
pomace and citrus peel by subcritical water
method [32].

Figure 5. FTIR spectra of the pectin extracted from orange waste
by ultrasound-assisted technique

To represent the level to which the
pectin molecules subsist, esterification degree
(DE) is very important indicator. In this study,
the result has shown that, the higher DE (>50
%) and it is considered as higher methoxyl
product. Pectin indicates a higher tendency to
form gel rapidly at a higher temperature and
greatly influences the lipid substance when the
DE is above 50% [33].

Another important criterion to classify
the functional behavior of pectin is the
equivalent weight (EW), since the gelling
tendency of individual pectin is linked very
closely with EW [34]. The higher EW, has
greater gel formation, while the lower EW,
indicates larger partial degradation of the
pectin, which is non-profitable [35] and thus
the raise or diminish of the EW could be used
to indicate the pectin property [18]. The
average EW of pectin in this study was found
to be 604.74 kDa, closest to data indicated by
Altaf et al. [36], that EW of extracted pectin
from papaya fruits using HCl. He stated that
pectin produced at lower pH value, has higher
EW, since lower pH can lead polymerization
of pectin into an extended chain, and in turn,
decrease the amount of free acid.
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The methoxyl content (MC) is a tool
used to control the setting time, the gel
strength and to find the functional properties
of pectin [37]. Kanmani [38], established that,
depending on the origin of raw material used
and method of extraction, the MC of this
substance usually ranged from 0.02–0.12. In
this study, 6.23% of MC was achieved. Since
the MC was below 12%, that indicates it is
suitable in terms of character, and besides due
to its higher DE.

Anhydrouronic acid, pectin must
contain at least 65% of galacturonic acid [39],
since it is used to represent the gelling
tendency of the pectin. The higher result
indicates the produced pectin has lower
contents of protein substance. Because the
more soluble pectin appeared effectively for
the lower protein content [40]. In the current
study, 68.25% of Anhydrouronic acid was
achieved above the minimum value specified
by FAO [39] for commercial application of
pectin.

Acetyl value (AV); the pre-study
showed that the moussing tendency of pectin
substance diminished by raising in the level of
acetylation and sample holding 0.035 0.04%
acetyl brings debile gels when moussing
capacity reestablished at about 0.024 acetyl
value [18]. In this study, the result indicates
that pectin has a good gelling capacity of
0.371%. The properties of pectin are shown in
Table 6.

Table 6. Properties of pectin extracted from orange wastes.

Literature Value
Parameters (%)

Current
value [13] [18]

Methoxyl content 6.21 6.23 8.875

Anhydrouronic acid 68.5 70.91 60.95

Acetyl content 0.37 0.4 0.455

Degree of esterification 62.5 60.4 55.01

Equivalent weight 610.56 599.74 -

Conclusion

Central composite design and artificial
neural network were employed to extract
pectin from orange wastes utilizing the
ultrasound-assisted method. The best condit-
ions for the process variables were; 22.51:1
mL/g of liquid-solid ratio, 1.52 of pH solution,
22.53 min of irradiation time and 155.6 W of
ultrasound power. At these points, 27.8±0.2%
pectin yield was achieved experimentally,
while 27.13 and 28.33% of yield were
achieved by prediction of central composite
design and artificial neural network model,
respectively. A pH study indicated that as pH
increases, the yield of pectin decreases. In
contrast, the extraction efficiency was also
enhanced by enhancing the ultrasound power.
The execution of artificial neural network
models for pectin yield was found to be better
in terms of the higher prediction and
performance indexes. However, huge data and
learning variables are necessary for artificial
neural network training, which is time
consuming. The extracted pectin has a
higher degree of esterification, and it is
grouped to high methoxyl pectin. For the same
conditions, the yield of pectin extracted from
orange waste is higher than pectin extracted
from orange peels since the orange waste
contains both internal and external parts of the
orange leftover.
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